On the Thermal Self-Initiation Reaction of n-Butyl Acrylate in Free-Radical Polymerization

نویسندگان

  • Hossein Riazi
  • Ahmad Arabi Shamsabadi
  • Patrick Corcoran
  • Michael C. Grady
  • Andrew M. Rappe
  • Masoud Soroush
چکیده

This experimental and theoretical study deals with the thermal spontaneous polymerization of n-butyl acrylate (n-BA). The polymerization was carried out in solution (n-heptane as the solvent) at 200 and 220 ◦C without adding any conventional initiators. It was studied with the five different n-BA/n-heptane volume ratios: 50/50, 70/30, 80/20, 90/10, and 100/0. Extensive experimental data presented here show significant monomer conversion at all temperatures and concentrations confirming the occurrence of the thermal self-initiation of the monomer. The order, frequency factor, and activation energy of the thermal self-initiation reaction of n-BA were estimated from n-BA conversion, using a macroscopic mechanistic model. The estimated reaction order agrees well with the order obtained via our quantum chemical calculations. Furthermore, the frequency factor and activation energy estimates agree well with the corresponding values that we already reported for bulk polymerization of n-BA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of n-Butyl Acrylate Self-Initiation Reaction Experimentally and via Macroscopic Mechanistic Modeling

This paper presents an experimental study of the self-initiation reaction of n-butyl acrylate (n-BA) in free-radical polymerization. For the first time, the frequency factor and activation energy of the monomer self-initiation reaction are estimated from measurements of n-BA conversion in free-radical homo-polymerization initiated only by the monomer. The estimation was carried out using a macr...

متن کامل

Synthesis, characterization and polymerization of a novel acrylate monomer containing both 4H-pyran-4-one and 1,2,3-triazole moiety and evaluation of their antibacterial activity

A novel acrylate monomer containing 4H-pyran-4-one and 1,2,3-triazole ring, {1-[4-(4-oxo-6-phenyl-4H-pyran-2-yl)benzyl]-1,2,3-triazol-4-yl}methyl acrylate was synthesized by the reaction of 2-{4-[(4-(hydroxymethyl)-1,2,3-triazol-1-yl)methyl]phenyl}-6-phenyl-4H-pyran-4-one with acryloyl chloride in the presence of triethylamine. The structure of the acrylate monomer was established on the basis ...

متن کامل

Self-initiation mechanism in spontaneous thermal polymerization of ethyl and n-butyl acrylate: a theoretical study.

In this study, the mechanism of self-initiation in spontaneous thermal polymerization of ethyl and n-butyl acrylate is explored using first-principles calculations. Density functional theory (with B3LYP functional and 6-31G* basis set) was used to study [4 + 2] and [2 + 2] cycloaddition reactions on the singlet and triplet potential energy surfaces. Diels-Alder (DA) dimers of ethyl acrylate [6-...

متن کامل

Pickering Emulsion Polymerization of Styrene-co-butyl Acrylate Nanoparticles by Using Cloisite Na+ as Surfactant

Cloisite Na+was used as a solid surfactant (stabilizer) in Pickering emulsion polymerization of styrene-co-butyl acrylate in presence of oil soluble initiator, azobisisobutyronitrile (AIBN) and water soluble initiator, potassium persulfate (KPS). Fourier transform infrared (FTIR) spectrum approved the corporation of Cloisite Na+ layers within the polymer matrix. Effect of clay content was a...

متن کامل

Computational study of the self-initiation mechanism in thermal polymerization of methyl acrylate.

This computational study deals with the mechanism of spontaneous initiation in thermal polymerization of alkyl acrylates (e.g., methyl, ethyl, and n-butyl acrylate). The mechanism is presently still unknown. Density-functional theory (DFT) and Møller-Plesset (MP2) calculations are used to explore the Flory and Mayo mechanisms of self-initiation in methyl acrylate. On the singlet surface, a low-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018